
Eur. Phys. J. D 8, 111–116 (2000) THE EUROPEAN
PHYSICAL JOURNAL D
c©

EDP Sciences
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Abstract. Second-harmonic cross-correlation operates a selection in time-phase among the randomly de-
phased contributions to an optical field that propagated through a scattering medium. It can thus be used
to selectively detect the weak contribution remaining coherent with the incident field.

PACS. 42.65.Ky Harmonic generation, frequency conversion – 42.25.Kb Coherence –
42.25.Dd Wave propagation in random media

1 Introduction

Since years, non-linear optical interactions have been
exploited in cross-correlation techniques for obtaining
images or, at least, detecting the presence of objects
immersed in turbid media, when the objects were transil-
luminated by intense laser pulses. Only recently, however,
has attention been brought to the advantages that the
coherence of these interactions may bring about to distin-
guish the weak image-bearing field contribution from the
overwhelming randomly scattered field [1,2]. In general,
this selection is operated either in time or in propagation
direction, due to the fact that a feature of the field to
be detected is that it has not taken random paths while
propagating after the object. Non-linear optical interac-
tions, occurring in both χ(2) and χ(3) media, are suitable
for operating either selection: time gating is performed
by cross-correlating the field behind the object with opti-
cally delayed replicas of the incident field (reference field),
whereas space Fourier filtering is obtained through the ful-
filment of the phase-matching condition required for gen-
erating the cross-correlated signal.

The general property that a non-linear interaction
couples only fields whose temporal phases are linked to
each other is rather relevant in both cases. It implies,
for instance, that with a broadband pulse, that is a non
transform-limited pulse, a time gate can be generated of
duration much shorter than the pulse duration: the tem-
poral width of the gate is rather of the order of the inverse
pulse bandwidth. By using this fact, Bashkansky et al. [3]
were able to generate a coherently amplified Raman po-
larisation (CARP) gate as short as 335 fs by using a 8-ns
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dye-laser pulse of 6 × 1012 Hz bandwidth. We re-
cently showed that, with second-harmonic (SH) cross-
correlation, one can selectively up-convert only those com-
ponents of the field travelling in the forward direction
behind the object that are in phase with those of the refer-
ence field [2]. Since these are the components carrying im-
age information, we could obtain clean far-field diffraction
patterns of a 1D object by using a 18-ns Nd:YAG-laser
pulse to transilluminate it: time gating was demonstrated
to be not necessary, if the field sent to the up-converting
crystal was the one leaving the object in a relatively nar-
row angle about the forward direction [2,4].

In either CARP or SH cross-correlation experiments
aimed at detecting objects through scattering media
[1,2,4], obvious advantages, both technical and econom-
ical, arise from the possibility of using Q-switched in-
stead of femtosecond lasers with chirp-pulse amplifiers and
compressors. When medical imaging is considered, an im-
portant further advantage is that higher intensities can
be used, since the maximum allowed energy fluences are
higher, if nanosecond instead of picosecond pulses are shed
onto human tissues [5]. This is particularly relevant for
CARP cross-correlation, which allows a 2D resolution suit-
able for the diagnosis of embedded tissue abnormalities [6],
because stimulated Raman scattering amplification does
not require phase matching.

2 Experimental set-up

The scheme we adopted in our experiments of SH cross-
correlation is the same as that reported in [2]. We used a
β-barium-borate crystal in type I phase-matching (BBO I,
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Fig. 1. Experimental set-up for measurements of SH cross-
correlated far-field patterns and geometry of the interaction
inside the BBO I crystal.

thickness: 2-mm, cross-sectional area: 5×5 mm2), in which
the wave-vectors of the fields to be cross-correlated, k1(ω)
and k2(ω) in Figure 1, cross at an angle 2ϑ to each other.
Thus, at difference with CARP gating systems, our sys-
tem is endowed with 1D resolution along a direction in
the horizontal plane, which is also the incidence and the
tuning plane (tuning angle, α), as depicted in Figure 1. In
this paper, we show that the coherence of the three-wave
interaction used for frequency up-conversion is responsible
not only for the selective conversion of the fraction of field
not affected by the scattering, but also for the space res-
olution of the technique. We think that the experimental
results and their theoretical interpretation here reported
add value to the fact that a Q-switched laser is used, in
that our technique of coherent phase-sensitive detection
opens the possibility of developing portable object-finders
with relatively long ranges.

All experiments were carried on with the non-amplified
output of a Q-switched Nd:YAG laser (mod. Quanta-Ray
GCR-4, Spectra-Physics Inc., Mountain View, CA), with
18-ns pulse duration, ∼ 1 cm−1 bandwidth. The output
beam was spatially filtered to achieve a beam quality sim-
ilar to that of a diffraction-limited beam, according to
the divergence measured over ∼ 4 m propagation in air.
The fundamental Nd laser pulses were 50% split into two
pulses, one sent to the sample and the other used as the
reference, arriving coincident in time at the BBO I crys-
tal. At the entrance of the sample cell, a 1× 5 cm2 quartz
cuvette (optical path: 1 cm) partially blanked by a stain-
less steel blade with a very sharp and straight vertical
edge and filled with a turbid medium (see Fig. 1 and [2]),
the beam cross-section was 870 µm in full-width at half
maximum (FWHM) diameter and the incident intensity,

averaged across the spot, was 11.5 MW/cm2. Far-field
intensity distributions were measured both for beam 1
at the wavelength of 1.064 µm, as collected by the lens
shown in Figure 1 in an angle ψ around k1(ω), and for its
frequency-doubled replica. The latter, with wave-vectors
k(2ω), was obtained upon cross-correlation to the refer-
ence field travelling along k2(ω) according to the geome-
try sketched in Figure 1, which was characterised by the
angles ϑ = 2.86◦ and α = 23.4◦ inside the BBO I crystal
(ϑcut = 40◦). Micelle suspensions of Intralipid (Pharma-
cia, Italy) in doubly-distilled water constituted the turbid
media. Note that the volume-to-volume concentrations of
Intralipid quoted in this paper are absolute percent val-
ues that include the 10% dilution factor of the commercial
product [7]. Prior to each experiment, once established the
angle between beams 1 and 2, the sample cell was filled
with water and the crystal tuned in angle for maximum
SH cross-correlation. The focal plane of the light collect-
ing lens (nominal f : 15 cm, diameter: 2 cm) was made to
coincide with the sensor plane of the CCD camera. The
camera, which was alternatively used to detect either the
up-converted or the fundamental (beam 1) far-field inten-
sity distribution, was a Pulnix (mod. PE2015, Pulnix Eu-
rope, Basingstoke, UK) and was connected to a Spiricon
(mod. LBA100, Spiricon, Logan, UT) for image analy-
sis. Suitable neutral-density filters with calibrated optical
densities were put before the CCD camera in each mea-
surement in order to ensure a linear response of the de-
tecting/digitising apparatus. When up-converted signals
were to be measured, a band pass filter was added to cut
the stray light at the fundamental wavelength.

3 Results and discussion

We first report on experiments in which the cell was filled
with 0.67% Intralipid, which gives a collimated transmit-
tance through the sample of ∼ 1.15×10−4 at 1.064 µm. In
these experiments, the cell was shifted in the x direction
(see Fig. 1) and the measurements were repeated for differ-
ent distances, x, of beam centre to blade edge (for x < 0,
beam 1 strikes the blank). Field 1 contributions travelling
at angles ψ ≤ 20.8 mrad to k1(ω) were accepted by both
the far-field lens, in the measurements at ω, and the BBO I
crystal, in those at 2ω. Integrals (i.e. power) and peak val-
ues (i.e. maximum intensity, as power × (mrad)−2) of the
far-field patterns, as obtained from the mapped intensity
values, are plotted in Figure 2. The filled symbols refer to
the measurements at ω and the open symbols to those at
2ω. The latter ones are only reported for x = +2.75 mm,
because SH cross-correlation did not give detectable sig-
nals at x ≤ −1.02 mm. On the contrary, infrared scattered
light evidently enters the collection angle ψ of the lens
even when the incident-beam spot falls onto the opposite
side of the blade, more than 4 mm away from the edge.
Note that, as long as the tails of the intensity distributions
are not cut by the low-limit sensitivity of the CCD, the
curves of integrals and peak values run parallel to each
other on the logarithmic scale of Figure 2. Since the ratio
of integrals to peak values is a measure of the detected spot
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Fig. 2. Power and peak intensity values of the far-field patterns
recorded when the beam is shed at distance x from the edge
of the blank immersed in the cell filled with 0.67% Intralipid.
The intensity is expressed in the same units as the power (a.u.)
divided by (mrad)2.

area in (mrad)2, we can assess that the scattered field 1
that gets around the obstacle has a far-field intensity dis-
tribution similar in shape to that of the beam allowed to
pass through the medium. This scattered field, however,
does not produce detectable up-converted signal. In order
to achieve a detectable SH cross-correlated signal level in
the case of blanked beam in 0.67% Intralipid, we then in-
creased the acceptance angle ψ (ψ = 80 mrad, ϑ = 3.33◦
and α = 23.6◦, incident intensity and incident spot diam-
eter as above) and made measurements for x = −0.25 mm
(see 3D plots in Figs. 3a and 3b) and x = +0.25 mm (see
Fig. 3c). In the former case, though the obstacle just stops
the most intense part of the beam cross-section, the SH
cross-correlated far-field pattern shown in Figure 3b is a
noisy one, with no memory of the scattered field pattern as
measured at ω and reported in Figure 3a. On the contrary,
a narrow pattern is obtained when SH cross-correlation is
performed for x = +0.25 mm, as shown in Figure 3c.

It might be argued that the cross-correlated signal van-
ishes as soon as the incident spot takes the blank because
of the corresponding strong decrease in intensity at ω (see
the high level of noise in Fig. 3a and the slope of the plots
in Fig. 2 on going toward negative x values). We think
that the next experiment rules out this possibility. We
compared the far-field distributions, at both ω and 2ω,
for the field transmitted through the scattering medium
(position: x = +2.75 mm, see data in Fig. 2) with those
for the field transmitted through the cuvette filled with
water. All other experimental conditions were as in the
first experiment. The results are displayed in the maps in
Figure 4, where the FWHM levels are highlighted. The
comparison of the measurement at ω with that at 2ω for
field 1 transmitted by water, in Figures 4a and 4a’, respec-
tively, shows that the non-linearity of the cross-correlation
has only little effect on the FWHM of the detected far-field
intensity pattern, in that the FWHM angular spread of the
k1(ω) wave-vectors, 0.37 mrad, produces a FWHM value

Fig. 3. Far-field intensity distributions of a 870 µm diameter
beam either striking onto the blank or passing through 1 cm
of 0.67% Intralipid.

of 0.36 mrad for the wave-vectors k(2ω) upon SH cross-
correlation. By contrast, the pattern at ω after the scat-
tering medium, with FWHM value of 0.48 mrad (Fig. 4b),
which is markedly broader than that transmitted by water
(see Fig. 4a), results in a k(2ω) pattern as narrow as that
of the cross-correlated scattering-free field 1 (see Figs. 4b’
and 4a’). We conclude that relatively low and similar in-
tensity levels at ω are frequency up-converted with lower
efficiency when the field is transmitted by a scattering
medium rather than by a non-scattering medium.

At last, the lack of up-conversion of the wings in
Figure 4b might originate from a phase mismatch, which
increases on going from the peak to the edge of the far-
field pattern that exceeds the non-linear interaction band-
width. In the following theoretical treatment, we demon-
strate that the bandwidth of SH conversion is by far
sufficiently broad to allow up-conversion of the most di-
verging k1(ω) wave-vectors recorded in the scattered field
at ω in Figure 4b. Further experimental support to this
statement is provided by the results in [2,4], where we
reported efficient conversion for diffraction maxima of a
narrow-needle that extended over even greater angles.

The space-dependent fields, two of which, at frequen-
cies ω1 and ω2, propagate at the angles ϑ1 and ϑ2 on
opposite sides respect to the phase-matched wave-vector
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Fig. 4. Far-field intensity distributions of a 870 µm diameter beam passing through 1 cm of either water (a and a’) or 0.67%
Intralipid (b and b’). The 50% level is highlighted by white lines.

k3(ω3 = ω1 + ω2), can be written as:

E1(y, z) =
1
2

√
2η1~ω1 [a1(z) exp(−jk1 cosϑ1z − jk1 sinϑ1y)+c.c.] x̂

(1a)
E2(y, z) =

1
2

√
2η2~ω2 [a2(z) exp(−jk2 cosϑ2z − jk2 sinϑ2y)+c.c.] x̂

(1b)
E3(y, z) =

1
2

√
2η3~ω3 {[a3y(y, z)ŷ + a3z(y, z)ẑ] exp(−jk3z)+c.c.}

(1c)

being k3(ω3) along the z-axis. In equations (1a, 1b, 1c),
η1,2,3 = (µ0/ε0)1/2/n1,2,3 and k1,2,3 = n1,2,3ω1,2,3/c0,
being µ0 and ε0 the magnetic permeability and elec-
tric permittivity, n1,2,3 the refractive indices and c0 the
speed of light in the vacuum. In the case a2(z) ∼= a2(0),
which occurs in our experiments since the reference pulse
is not depleted by the interaction, the fields in equa-
tions (1a, 1b, 1c) can be calculated. In particular, by im-
posing also the boundary condition a3y(y, 0) = a3z(y, 0) =
0, we find:

|a3(y, z)|2 = a2
3y(y, z) + a2

3z(y, z)

= |ga1(0)a2(0)|2z2sinc2
(z

2

√
∆k2
‖ + 4 cosϑ1g2|a2(0)|2

)
.

(2)

In equation (2), g is given by:

g =
√

2~η3
0

ω1ω2ω3

n1n2n3
(d2

22 + d2
31) (3)

being dij the elements of the second-order susceptibility
tensor, and

∆k‖ = k3 − k1 cosϑ1 − k2 cosϑ2 (4)

represents the phase mismatch in the z direction. In the
case of SH cross-correlation of fields 1 and 2 in a BBO I
crystal, the photon conversion efficiency, ε, defined as ε =
ε(z) = |a3(z)|2/|a1(0)|2, turns out to be:

ε(z) = γ2
sin2

(√
∆k2
‖ + γ2 cosϑ

z

2

)
∆k2
‖ + γ2 cosϑ

(5)

where γ2 is given by:

γ2 = 16(d2
22 + d2

31)η3
0

ω2

n2
FnSH(α)

I (6)

and nF and nSH(α) are the refractive indices experienced
by fundamental and up-converted fields and I denotes the
incident intensity of the reference beam 2. Upon substitu-
tions with the numerical values (d22 = 17.7× 10−24 C3/J,
d31 = 1.24 × 10−24 C3/J, averages of literature data [8],
α = 23.4◦, I = 11.5 MW/cm2), equation (6) gives γ2 ∼=
15 351 m−2 for the experiment in Figure 4. Thus, the pho-
ton conversion efficiency at the crystal exit, ε(L = 2 mm),
can be calculated from equation (5) with ϑ = 2.86◦. A
z value equal to the crystal depth L has been taken,
because both SH walk-off and the difference between α
and ϑcut were disregarded. In our conditions, the photon-
conversion efficiency turns out to achieve a maximum
value of ∼ 1.53% for ∆k‖ = 0 and to drop to zero
for ∆k‖ ∼= 32 cm−1. Since, in phase matching, we have
k1 cosϑ ∼= 48 791 cm−1, in order to achieve a mismatch
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of ±16 cm−1 the k1 wave-vector should deviate from ϑ by
as much as ∼ +6.2 mrad and ∼ −7.1 mrad (on opposite
sides). Such deviations are much greater than the overall
angular spread of the far-field pattern at ω in Figure 4b,
which only covers ±0.24 mrad about the peak. Therefore
the entire pattern of the scattered wave-vectors should be
up-converted.

As in our previous work [2], we are forced to conclude
that SH cross-correlation reduces the contributions of the
incoherent field in the detected far-field patterns because
it is a coherent effect. Let us consider the part of field 1
propagating in a direction along which some ballistic sig-
nal travels. This means that we take the overall, coherent
and incoherent, field 1 having wave-vector equal to that
of the incident field, k1(ω) in Figure 1. The effect of the
turbid medium on a frequency component at ω of the in-
cident field:

E1(t) = E1ejωt (7)

is to split it into N incoherent fields

E1,φ(t) = E1,φej(ωt−φ) (8)

plus a single one, coherent with the incident component,
E1,0(t), that is still a fraction of the field in equation (7):

E1,0(t) = E1,0ejωt. (7’)

Note that, in the absence of absorption losses by the
medium, the only restriction on the amplitudes is that
the overall intensity at ω carried, out of the sample, by
all fields E1,φ(t) and by the coherent one E1,0(t) is given
by |E1|2. In addition, the N de-phasing angles, φ in equa-
tion (8), have any value in the interval (−π, +π). Accord-
ing to equation (1a) and in the simple case of collinearly
propagating fields, we can write the space-dependent com-
plex amplitude E1,0 = E1,0(z) of the coherent field in
equation (7’) after travelling a z optical pathway inside
the BBO I crystal, as

E1,0(z) =
√

2ηF~ωa1(z)e−jk1z (9)

where ηF = (µ0/ε0)1/2/nF. If we define

a′1,φ(z) = a1,φ(z)e−jφ (10)

also the space-dependent complex amplitude, E1,φ =
E1,φ(z), of any incoherent component in equation (8) can
be re-written as

E1,φ(z) =
√

2ηF~ωa′1,φ(z)e−jk1z. (9’)

Since equation (9’) is identical to equation (9), upon
substituting a1(z) with a′1,φ(z), the equations coupling
a′1,φ(z) to the complex amplitudes of field 2, a2(z), and
of the field at 2ω, a3(z), which are defined according to
equations (1b, 1c) for ϑ1 = ϑ2 = 0, are those that ap-
ply to a1(z), a2(z), and a3(z) [9]. These equations can be

solved in the approximation a2(z) ∼= a2(0) and give, when
∆k = k3 − k1 − k2 = 0,

a3,φ(z) = −ja′1,φ(0) sin
γz

2
(11)

or, by substituting equation (10),

a3,φ(z) = −ja1,φ(0)e−jφ sin
γz

2
(11’)

with γ = 2ga2(0). Note that, to get the solution
in equation (11), we assumed the coupling equations
for collinearly propagating fields as valid, but disre-
garded the field at 2ω generated by the autocorrela-
tion of either fields 1 or 2 because these interactions are
phase-mismatched in our non-collinear phase-matching
geometry.

Since scattering is a random phenomenon, there is no
reason to support any peculiar behaviour of a1,φ(0) as a
function of φ. If one takes into account that (i) all fields
that propagated in the turbid medium for pathlengths, d,
differing from each other by multiples of λF(dn = d± nλ)
contribute to the amplitude a1,φ(0) with φ = (2π/λ)d and
that (ii) the probability distribution for the pathlength,
P (d), exhibits significant variations only over intervals
∆d � λF, it seems reasonable to assume that the am-
plitudes a1,φ(0) ∝

∑
n P (dn) are virtually independent of

φ. For such equal incoherent amplitudes, equation (11’)
leads to equal-amplitude incoherent contributions to the
up-converted field 3. Their sum (vector sum in the com-
plex plane) is thus proportional to

√
N〈a1,φ(0)〉 in mag-

nitude and has a phase value Φ − π/2, where Φ denotes
the phase of the overall scattered field 1 as given by the
random-walk statistics. The corresponding field at 2ω (see
Eq. (1c)) should then be added to the one generated by the
coupling of field 2 with the coherent field E1,0, described by
equations (7’, 9), and an overall field with space-dependent
complex amplitude

E3(z) =√
4ηSH~ω

{
−j
[
a1(0) +

√
N〈a1,φ(0)〉e−jφ

]
sin

γz

2

}
e−jk3z

(12)

would be obtained at 2ω, with ηSH = (µ0/ε0)1/2/nSH.
Thus, in the E3(z) amplitude, the signal to noise (i.e.
coherent to incoherent) ratio is a1(0)/(

√
N〈a1,φ(0)〉), that

is the same as that in the E1(0) amplitude.
Due to the bandwidths of both laser pulse and photon-

conversion efficiency, the interaction k1(ω), k2(ω) →
k(2ω) is not the only one producing field at 2ω accord-
ing to equation (12). Other contributions arise from the
interactions [k1(ω±∆ω), k2(ω∓∆ω)]→ k(2ω) for all ∆ω
values within the bandwidth. Note that, in our case, the
relevant bandwidth is the one of the laser pulse, which
is narrower than that of the SH interaction. To decide
how these contributions modify the signal to noise ratio
in the overall E3(z) amplitude, it is convenient to re-write
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equation (12) as

E3(z) ∼=√
4ηSH~ω

{
−j
[
a1(0) +

√
N〈a1,φ(0)〉e−jΦ

]
a2(0)

}
gze−jk3z

(12’)

and to take into account that a1(0), a1,φ(0) and a2(0)
now refer to frequencies shifted by ±∆ω with respect to
the central laser frequency ω. If the incident pulse spec-
trum contains M frequencies with relevant amplitudes,
say, the M longitudinal modes of the Nd:YAG laser, the
term a1(0)a2(0) in equation (12’) obtained for field 1 at
ω + ∆ω and field 2 at ω − ∆ω has the same phase as
that of the term obtained for field 1 at ω − ∆ω and
field 2 at ω + ∆ω, independently of the time-coherence
properties of the pulse. Therefore, in the calculation of
the overall amplitude at 2ω, these two terms add coher-
ently and produce a contribution, C±∆ω , proportional to
2a1(0)a2(0). By assuming, for simplicity, a flat spectral
profile, the integral contribution for all ∆ω values will
have an amplitude proportional to either (M/2)C±∆ω or√
M/2C±∆ω for a transform-limited or a non-transform-

limited incident pulse, respectively. By contrast, and in-
dependently of the coherence properties of the incident
pulse, the second term in equation (12’) originates M ran-
domly de-phased contributions at the different ∆ω val-
ues, whose sum will have an amplitude proportional to√
MNa1(0)a2(0). In conclusion, the overall result of the

interactions [k1(ω ± ∆ω), k2(ω ∓ ∆ω)] → k(2ω) is an
increase in the ratio of coherent to incoherent contribu-
tions in the E3(z) amplitude, with respect to the ratio,
≈ 1/

√
N , obtained in the case of monochromatic interac-

tion (see above). In fact, the ratio becomes a number be-
tween

√
2/N and

√
M/N , depending on the coherence of

the incident (and reference) pulse. For a given bandwidth
of the incident pulse, i.e. for a given M value (M ∼= 100 in
our case), a field E1(0) with a coherent to incoherent ra-
tio proportional to 1/

√
N is then up-converted into a field

E3(z) in which this ratio is enhanced by a factor that can
be as great as

√
M , if the M modes are linked in phase,

but cannot be smaller than
√

2. The coherence of the SH
cross-correlation is entirely responsible for these results,
including the existence of the lower limit,

√
2, which is

achieved for fully incoherent laser modes.
The experimental results in Figures 3 and 4 agree

with the evaluations of above. The signal to noise ratio in
Figure 4b has to be taken as proportional to 1/

√
N ,

whereas the signal to noise ratio, S/N , in Figure 4b’ is
the one expected to fall between

√
2/N and

√
M/N .

Though it cannot be appreciated in the plotted intensity
maps, S/N is greater by a factor R ∼= 25 in Figure 4b’
as compared with Figure 4b. Note that a purely scat-
tered field, such as that measured in Figures 3a and 3b
gives detected signals that are in a similar ratio to each
other, when detected at ω (Fig. 3a) rather than upon SH
cross-correlation, as in Figure 3b. According to the con-
siderations of above, the coherent-to-incoherent field de-
tectability ratio,

√
R, should be comprised in the interval

(
√

2,
√
M).

In conclusion, we showed that SH cross-correlation
with the incident field of the forward-scattered field is a
means to detect the low-intensity residual coherent field
immersed in the scattered incoherent one, even when the
latter is more intense. The cross-correlation selectivity for
the coherent field seems to result predominantly from the
coherence rather than the spatial-filtering action of the
non-linear interaction.
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